Impact of Particle Size Distribution in the Preform on Thermal Conductivity, Vickers Hardness and Tensile Strength of Copper-Infiltrated AISI H11 Tool Steel

Author:

Vetter Johannes123ORCID,Beneder Samuel1,Kandler Moritz4,Feyer Felix4ORCID,Körner Carolin34ORCID,Schmidt Michael123

Affiliation:

1. Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Photonic Technologies, Konrad-Zuse-Straße 3/5, 91052 Erlangen, Germany

2. Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, 91052 Erlangen, Germany

3. Institute of Advanced Materials and Processes (ZMP), Dr.-Mack-Straße 81, 90762 Fürth, Germany

4. Friedrich-Alexander-Universität Erlangen-Nürnberg, Materials Science and Engineering for Metals, Martensstraße 5, 91058 Erlangen, Germany

Abstract

Spontaneous infiltration of a porous preform by a metallic melt provides the potential of generating metal matrix composites (MMCs) with tailored combinations of material properties at low cost. The bulk of tool inserts for injection molding must sustain high mechanical and thermal loads and simultaneously exhibit high thermal conductivity for efficient temperature control of the mold insert. To fulfill these contradictory requirements, AISI H11 tool steel preforms were infiltrated by liquid copper. The impact of the fine powder fraction (0 wt.% to 15 wt.%) blended to a coarse H11 powder in the preform on thermal conductivity, Vickers hardness and tensile strength was elucidated. The thermal conductivity of the composites could be enhanced by a factor of 1.84 (15 wt.% fine powder) and 2.67 (0 wt.% fine powder) with respect to the sintered H11 tool steel. By adding 15 wt.% fine powder to the coarse host powder, the tensile strength and Vickers hardness of the copper-infiltrated steel were 1066.3 ± 108.7 MPa and 366 ± 24 HV1, respectively, whereas the H11 tool steel yielded 1368.5 ± 89.3 MPa and 403 ± 17 HV1, respectively. Based on the results obtained, an appropriate particle size distribution (PSD) may be selected for preform preparation according with the requirements of a future mold insert.

Funder

Erlangen Graduate School in Advanced Optical Technologies

Publisher

MDPI AG

Subject

General Materials Science

Reference34 articles.

1. Hopmann, C., Menges, G., Michaeli, W., and Mohren, P. (2018). Spritzgießwerkzeuge: Auslegung, Bau, Anwendung, Carl Hanser Verlag. [7th ed.].

2. Increasing the wear resistance of molds for injection of glass fiber reinforced plastics;Silva;Wear,2011

3. Magnum Manufacturing (2022, November 04). Injection Molding: The Definitive Engineering Guide. Available online: https://magnum-mfg.com.

4. A hybrid additively manufactured martensitic-maraging stainless steel with superior strength and corrosion resistance for plastic injection molding dies;Samei;Addit. Manuf.,2021

5. Corrosion failure analysis of a cooling system of an injection mold;Kharytonau;Eng. Fail. Anal.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research and developments of ceramic-reinforced steel matrix composites—a comprehensive review;The International Journal of Advanced Manufacturing Technology;2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3