Comparison to Micro Wear Mechanism of PVD Chromium Coatings and Electroplated Hard Chromium

Author:

Yang Zhongyi1,Zhang Ning1,Li Hongtao1ORCID,Chen Bo1,Yang Bo2

Affiliation:

1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China

2. Jiangyin Innovation Institute of Metal Materials Co., Ltd., Wuxi 214433, China

Abstract

Electroplated hard chromium (EPHC) has been widely used in industry due to its excellent mechanical properties, but the development of this technology is limited by environmental risks. The physical vapor deposition (PVD) process has shown promise as an alternative to EPHC for producing chromium-based coatings. In this research, we investigate the microstructure and wear resistance of pure chromium coatings using two PVD techniques, namely, magnetron sputtering ion plating (MSIP) and micro-arc ion plating (MAIP), which are compared to EPHC. To assess wear resistance, we evaluated factors such as hardness, coating base bonding force, wear rate and friction coefficient via friction and wear experiments. The results show that, in terms of microstructure, while the EPHC coating does not exhibit a strong preferred growth orientation, the PVD coatings exhibit an obvious preferred growth orientation along the (110) direction. The average grain size of the EPHC coating is the smallest, and the PVD chromium coatings show a higher hardness than the EPHC coating. The results of pin-on-disk tests show that there is little difference in friction coefficients between EPHC and MAIP chromium plating; however, the MAIP chromium coating showed an excellent specific wear rate (as low as 1.477 × 10−13 m3/Nm). The wear condition of the MAIP chromium coating is more stable than that of the EPHC coating, indicating its potential as a replacement for EPHC.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3