Accelerating Density Functional Calculation of Adatom Adsorption on Graphene via Machine Learning

Author:

Qu Nan1,Chen Mo1,Liao Mingqing1,Cheng Yuan2,Lai Zhonghong3,Zhou Fei1,Zhu Jingchuan1,Liu Yong1,Zhang Lin4ORCID

Affiliation:

1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

2. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, China

3. Center of Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin 150001, China

4. Biological Physics, Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK

Abstract

Graphene has attracted significant interest due to its unique properties. Herein, we built an adsorption structure selection workflow based on a density functional theory (DFT) calculation and machine learning to provide a guide for the interfacial properties of graphene. There are two main parts in our workflow. One main part is a DFT calculation routine to generate a dataset automatically. This part includes adatom random selection, modeling adsorption structures automatically, and a calculation of adsorption properties. It provides the dataset for the second main part in our workflow, which is a machine learning model. The inputs are atomic characteristics selected by feature engineering, and the network features are optimized by a genetic algorithm. The mean percentage error of our model was below 35%. Our routine is a general DFT calculation accelerating routine, which could be applied to many other problems. An attempt on graphene/magnesium composites design was carried out. Our predicting results match well with the interfacial properties calculated by DFT. This indicated that our routine presents an option for quick-design graphene-reinforced metal matrix composites.

Funder

Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3