Analytical and Numerical Investigation of Nanowire Transistor X-ray Detector

Author:

Ellakany Abdelhady1,Zekry Abdelhalim1ORCID,Abouelatta Mohamed1ORCID,Shaker Ahmed2ORCID,Sayah Gihan T.3,El-Banna Mohamed M.2ORCID

Affiliation:

1. Electronics and Communication Engineering Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt

2. Engineering Physics and Mathematics Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt

3. Electronic Engineering Department, Nuclear Material Authority, Cairo 11381, Egypt

Abstract

Recently, nanowire detectors have been attracting increasing interest thanks to their advantages of high resolution and gain. The potential of using nanowire detectors is investigated in this work by developing a physically based model for Indium Phosphide (InP) phototransistor as well as by performing TCAD simulations. The model is based on solving the basic semiconductor equations for bipolar transistors and considering the effects of charge distribution on the bulk and on the surface. The developed model also takes into consideration the impact of surface traps, which are induced by photogenerated carriers situated at the surface of the nanowire. Further, photogating phenomena and photodoping are also included. Moreover, displacement damage (DD) is also investigated; an issue arises when the detector is exposed to repeated doses. The presented analytical model can predict the current produced from the incident X-ray beam at various energies. The calculation of the gain of the presented nanowire carefully considers the different governing effects at several values of energies as well as biasing voltage and doping. The proposed model is built in MATLAB, and the validity check of the model results is achieved using SILVACO TCAD device simulation. Comparisons between the proposed model results and SILVACO TCAD device simulation are provided and show good agreement.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3