Microstructure and Mechanical Properties of Gradient Interfaces in Wire Arc Additive Remanufacturing of Hot Forging Die Steel

Author:

Ni Mao123,Hu Zeqi1234,Qin Xunpeng1234,Xiong Xiaochen123,Ji Feilong123

Affiliation:

1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China

2. School of Automotive Engineering, Wuhan University of Technology, Wuhan 430070, China

3. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070, China

4. Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang 441000, China

Abstract

Hot forging dies are subjected to periodic thermal stress and often fail in the forms of thermal fatigue, wear, plastic deformation, and fracture. A gradient multi-material wire arc additive remanufacturing method for hot forging dies was proposed to extend the service life of hot forging dies and reduce total production costs. The properties of multi-material gradient interfaces play a critical role in determining the overall performance of the final products. In this study, the remanufacturing zone of a hot forging die was divided into three deposition layers: the transition layer, the intermediate layer, and the strengthening layer. Experiments of wire arc additive manufacturing with gradient material were conducted on a 5CrNiMo hot forging die steel. The microstructure, microhardness, bonding strength, and impact property of gradient interfaces were characterized and analyzed. The results revealed that the gradient additive layers and their interfaces were defect-free and that the gradient interfaces had obtained a high-strength metallurgical bonding. The microstructure of the gradient additive layers presented a gradient transformation process of bainite-to-martensite from the bottom to the top layer. The microhardness gradually increased from the substrate layer to the surface-strengthening layer, forming a three-level gradient in the range of 100 HV. The impact toughness values of the three interfaces were 46.15 J/cm2, 54.96 J/cm2, and 22.53 J/cm2, and the impact fracture morphology ranged from ductile fracture to quasi-cleavage fracture. The mechanical properties of the gradient interfaces showed a gradient increase in hardness and strength, and a gradient decrease in toughness. The practical application of hot forging die remanufactured by the proposed method had an increase of 37.5% in average lifespan, which provided scientific support for the engineering application of the gradient multi-material wire arc additive remanufacturing of hot forging dies.

Funder

National Key R&D Program of China

Major Project of Technological Innovation in Hubei Province

Open Fund of Hubei Longzhong Laboratory

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3