Role of Surface-Active Element Sulfur on Thermal Behavior, Driving Forces, Fluid Flow and Solute Dilution in Laser Linear Welding of Dissimilar Metals

Author:

Shu Zhuang12,Yu Gang1234,Dong Binxin12,He Xiuli124,Li Zhiyong124,Li Shaoxia124ORCID

Affiliation:

1. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

2. School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100190, China

3. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China

4. Guangdong Aerospace Research Academy, Guangzhou 511458, China

Abstract

Understanding heat and mass transfer and fluid flow in the molten pool is very helpful in the selection and optimization of processing parameters, and the surface-active element has an important effect on the heat and mass transfer in laser welding of dissimilar metals. A three-dimensional (3D) numerical model coupled with a sub-model of surface tension, which considers the influence of local temperature and the concentration of surface-active element sulfur at the gas/liquid surface, is used to analyze the thermal behavior, driving forces, fluid flow, and solute dilution during laser linear welding of 304SS and Ni. The relationship between surface tension, driving forces, and the temperature coefficient of surface tension with the spatial distribution of temperature and the surface-active element sulfur is quantitatively analyzed. The simulation results show that the molten pool is fully developed at 45 ms, and the collision of inward and outward convection, with the maximum velocity reaching 1.7 m/s, occurs at the isotherm with a temperature between 2200 K and 2500 K. The temperature-gradient term and concentration-gradient term of surface shear stress play different roles in different positions of the free surface. The local sulfur concentration changes the temperature sensitivity of the surface tension at different sides of the free surface and further determines the transition of convection. Complex fluid flow promotes solute dilution, and the distribution of solute becomes uniform from the front to the rear of the molten pool. The Ni element is transferred to 304SS mainly at the rear side. The work provides theoretical support for the control of joint quality by changing the content of surface-active elements in dissimilar welding.

Funder

National Natural Science Foundation of China

High-level Innovation Research Institute Program of Guangdong Province

Research Project of Guangdong Aerospace Research Academy

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3