Topological Optimisation Structure Design for Personalisation of Hydrogel Controlled Drug Delivery System

Author:

Gao Yang12ORCID,Li Tan1ORCID,Meng Fanshu1,Hou Zhenzhong3,Xu Chao1ORCID,Yang Laixia1

Affiliation:

1. School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

2. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China

3. College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

Personalised controlled drug delivery systems (CDDSs) can adjust drug concentration levels according to patient needs, which has enormous research prospects in precision medicine. In this study, the topological optimisation method was utilised in the structural design of a hydrogel CDDS to achieve a parameter-based adjustment of the drug average concentration in the hydrogel. A polyacrylamide/sodium alginate dual-network hydrogel was selected as a drug carrier, and tetracycline hydrochloride was used as a model drug. The topological optimisation model of the hydrogel CDDS was developed. The effects of the mesh size, target concentration, and volume factor on the optimised results were investigated. Hydrogel flow channel structures were obtained, which satisfied the different target concentrations. To verify the rationality of the optimisation model, in vitro drug release experiments were carried out. The results show that the hydrogel CDDS can control drug release within 7 days, and the drug release tends to follow zero-order release behaviour. The adjustable average concentration of tetracycline hydrochloride in hydrogel CDDS is recommended in the range of 20.79 to 31.04 mol/m3. This novel method provides a reference for personalised structure design of CDDS in the context of precision medicine.

Funder

National Natural Science Foundation of China

Basic Research Plan of Natural Science of Shaanxi Province

State Key Laboratory for Manufacturing Systems Engineering

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3