Volume Deformation and Hydration Behavior of Ordinary Portland Cement/Calcium Sulfoaluminate Cement Blends

Author:

Ji Guangxiang1,Ali Hafiz Asad2ORCID,Sun Keke23ORCID,Xuan Dongxing2,Peng Xiaoqin4,Li Jingjun3

Affiliation:

1. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China

2. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China

3. School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

4. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

Abstract

Blends of ordinary Portland cement (OPC) and calcium sulfoaluminate (CSA) cement can be used to adjust the properties of cement for specific applications. In this study, CSA cement was used as a shrinkage-compensating admixture to improve the hydration behavior and performance (compressive strength and drying shrinkage) of OPC; the expansion behavior of the blended cement mortar was evaluate based on the saturation index of ettringite. The experimental results showed that incorporating CSA cement resulted in a delayed effect on the hydration of C3S, shortened the induction periods of the blended cement and decreased the setting time. The CSA cement also improved the early compressive strength and drying shrinkage of the OPC due to its compact microstructure. The drying shrinkage of the OPC mortar decreased by 27.8% when 6% CSA cement was used, but the formation of microcracks due to expansion could negatively impact its late compressive strength development and associated pore structures of the blends when the replacement content of CSA cement exceeded 6 wt.%. The results relevant to the expansion behavior of the CSA cements could induce crystallization stress, enhancing its resistance against shrinkage cracking.

Funder

Key Project of Open Fund of Shaanxi Key Laboratory of Safety and Durability of Concrete Structures

key R&D and Achievement Transformation Projects of the Inner Mongolia Autonomous Region

Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3