Affiliation:
1. College of Civil Engineering, Xiangtan University, Xiangtan 411105, China
Abstract
Corrosion-effected bond behavior between polyvinyl-alcohol-fiber-reinforced concrete and steel rebar under a chloride environment is the experimental subject studied in the present work. Twenty-four pull-out specimens are designed and subjected firstly to an accelerated corrosion test. The effects of polyvinyl alcohol fibers on the cracking behavior, chloride penetration of concrete members and the corrosion loss of steel rebars during the corrosion test are discussed. After this, these corroded specimens are subjected to a pull-out test. The failure mode, the bond-slip curves and the typical bond-stress values are measured during the test. The effects of polyvinyl alcohol fibers and corrosion loss on bond behavior between polyvinyl-alcohol-fiber-reinforced concrete and steel rebar are clarified. Results show that the polyvinyl-alcohol-fiber-reinforced concrete exhibits worse resistance to corrosion damage than plain concrete. The cracking width, chloride penetration depth in concrete and the corrosion loss of steel rebar are more serious for the specimens with more polyvinyl alcohol fibers. The polyvinyl alcohol fibers also negatively affect bonding in ascending branches for both the specimens, but improve the bonding in descending branches after peak stress in the case of splitting. In the present test, the bond strength of corrosive specimens is increased slightly and then decreases gradually with the deepening of corrosion loss. The failures of specimens change from pull-out to splitting-pull-out as the corrosion time exceeds 30 days. Compared with uncorroded specimens, the maximum degradation of bond strength is about 50.1% when the corrosion is increased from 0% to 15%.
Funder
Education Department Research Foundation of Hunan Province
Natural Science Foundation of Hunan Province of China
Guangdong Basic and Applied Basic Research Foundation
National Natural Science Foundation
Special Funds for the Construction of Innovative Provinces in Hunan, China
Subject
General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献