Application of Atmospheric-Pressure Jet Plasma in the Presence of Acrylic Acid for Joining Polymers without Adhesives

Author:

Günther Roman12ORCID,Caseri Walter2ORCID,Brändli Christof1ORCID

Affiliation:

1. Laboratory of Adhesives and Polymer Materials, Institute of Materials and Process Engineering, ZHAW Zurich University of Applied Sciences, 8401 Winterthur, Switzerland

2. Multifunctional Materials, Department of Materials, ETH Zürich, 8093 Zurich, Switzerland

Abstract

This study investigates the treatment of surfaces with jet plasma at atmospheric pressure in the presence of acrylic acid as a resource-saving and efficient approach to joining polymers on polystyrene (PS) and polyamide 12 (PA 12) surfaces. Acrylic acid was added in order to introduce functional groups to the polymer surfaces. XPS analysis revealed a high density of oxygen-containing groups, e.g., carboxylic acid groups, on the polymer surfaces, the detailed composition depending on the polymer. The AFM measurements indicated that the modification of polyamide resulted in morphological changes and an increase in surface roughness due to polymer recrystallization. When the surface-modified polymers were brought in contact under a load, significant adhesion between the polymer surfaces was measured. In particular, PS and PA 12, which are otherwise difficult to join by gluing, could readily be connected in this way. The joint polymers could be separated intentionally by immersion in water, thus enabling the recycling of the materials. The resistance of the joint to water depends on the polymer system, with polyamide providing strikingly higher resistance than polystyrene. Accordingly, treating the joint polymers with water allows debonding on demand, particularly when PS is involved. Exposure of modified polymer surfaces to solutions of metal ions increased the resistance of joint polymers to water.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3