Towards an Optimized Artificial Neural Network for Predicting Flow Stress of In718 Alloys at High Temperatures

Author:

Zhang Chunbo1,Shi Qingyu2,Wang Yihe3,Qiao Junnan2,Tang Tianxiang2,Zhou Jun1,Liang Wu1,Chen Gaoqiang2

Affiliation:

1. Harbin Welding Institute Limited Company, Harbin 150028, China

2. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

3. Smart Manufacturing Thrust, Systems Hub, Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511466, China

Abstract

Artificial neural networks (ANNs) have been an important approach for predicting the value of flow stress, which is dependent on temperature, strain, and strain rate. However, there is still a lack of sufficient knowledge regarding what structure of ANN should be used for predicting metal flow stress. In this paper, we train an ANN for predicting flow stress of In718 alloys at high temperatures using our experimental data, and the structure of the ANN is optimized by comparing the performance of four ANNs in predicting the flow stress of In718 alloy. It is found that, as the size of the ANN increases, the ability of the ANN to retrieve the flow stress results from a training dataset is significantly enhanced; however, the ability to predict the flow stress results absent from the training does not monotonically increase with the size of the ANN. It is concluded that the ANN with one hidden layer and four nodes possesses optimized performance for predicting the flow stress of In718 alloys in this study. The reason why there exists an optimized ANN size is discussed. When the ANN size is less than the optimized size, the prediction, especially the strain dependency, falls into underfitting and fails to predict the curve. When the ANN size is less than the optimized size, the predicted flow stress curves with the temperature, strain, and strain rate will contain non-physical fluctuations, thus reducing their prediction accuracy of extrapolation. For metals similar to the In718 alloy, ANNs with very few nodes in the hidden layer are preferred rather than the large ANNs with tens or hundreds of nodes in the hidden layers.

Funder

the National Key Research and Development Program of China

the Natural Science Foundation of Heilongjiang Province

the Tsinghua National Laboratory for Information Science and Technology

Publisher

MDPI AG

Subject

General Materials Science

Reference36 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3