The Effect of Cu Content on the Microstructure and Properties of the Wire Arc Additive Manufacturing Al-Cu Alloy

Author:

Ren Lingling1,Wang Zhenbiao23,Wang Shuai1,Li Chengde1,Wang Wei1,Ming Zhu1,Zhai Yuchun4

Affiliation:

1. Inner Mongolia Metal Material Research Institute, Baotou 014000, China

2. Welding and Additive Manufacturing Centre, Cranfield University, Bedfordshire MK43 0AL, UK

3. North East Industrial Materials & Metallurgy Co., Ltd., Fushun 113000, China

4. School of Materials and Metallurgy, Northeastern University, Shenyang 110000, China

Abstract

Al-Cu alloy has broad application prospects in the field of aerospace due to its excellent performance. In this paper, deposits with different Cu contents were prepared by the wire arc additive manufacturing (WAAM) process, and the effects of Cu content on the microstructure and mechanical properties were investigated. The microstructure of Al-Cu alloy was investigated by metallography, scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), and transmission electron microscope (TEM). The results show that both the number and size of the precipitated θ phases (Al2Cu) in the as-deposited material increase with the increase of Cu content. After the T4 treatment, the solid solution amount of Cu in the matrix showed a trend of first increasing and then remaining stable. When the content of Cu was greater than 5.65%, as the Cu content increased, the number and size of the remaining θ phases both increased. In the peak ageing state, the amount of precipitated θ’ phase showed a trend of increasing and then remaining stable. After the T6 treatment, the mechanical properties showed a trend of first increasing and then decreasing with the increase of the content of Cu. When the Cu content was 5.65%, the deposit achieved the best mechanical properties, and the anisotropy of the mechanical properties disappeared. The tensile strength, yield strength, and elongation reached 538 MPa, 478 MPa, and 10.5%, respectively. When the content of Cu was greater than 5.65%, the anisotropy of mechanical properties was obvious, and the fracture mode of the vertical specimen changed from ductile fracture to brittle fracture.

Publisher

MDPI AG

Subject

General Materials Science

Reference24 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3