Fast Degradation of Rhodamine B by In Situ H2O2 Fenton System with Co and N Co-Doped Carbon Nanotubes

Author:

Cui Wei1,Fang Jiahui2,Wan Yuanyuan2,Tao Xueyu2,Guo Litong2,Feng Qiyan1

Affiliation:

1. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

2. School of Materials and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

Abstract

In this study, an E-fenton oxidation system based on Co-N co-doped carbon nanotubes (Co-N-CNTs) was designed. The Co-N-CNTs system showed fast degradation efficiency and reusability for the degradation of rhodamine B (RhB). The XRD and SEM results showed that the Co-N co-doped carbon nanotubes with diameters ranging from 40 to 400 nm were successfully prepared. The E-Fenton degradation performance of Co-N-CNTs was investigated via CV, LSV and AC impedance spectroscopy. The yield of H2O2 could reach 80 mg/L/h within 60 min, and the optimal voltage and preparation temperature for H2O2 yield in this system was −0.7 V (vs. SCE) and 800 °C. For the target pollutant of RhB, the fast removal of RhB was obtained via the Co-N-CNTS/E-Fenton system (about 91% RhB degradation occurred during 60 min), and the •OH played a major role in the RhB degradation. When the Fe2+ concentrations increased from 0.3 to 0.4 mM, the RhB degradation efficiency decreased from 91% to about 87%. The valence state of Co in the Co-N-C catalyst drove a Co2+/Co3+ cycle, which ensured the catalyst had good E-Fenton degradation efficiency. This work provides new insight into the mechanism of an E-Fenton system with carbon-based catalysts for the efficient degradation of RhB.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Future Scientists Program of “Double First Class” of China University of Mining and Technology

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3