Abstract
Ischemic stroke is one of the leading causes of death among the aged population in the world. Experimental stroke models with rodents play a fundamental role in the investigation of the mechanism and impairment of cerebral ischemia. For its celerity and veracity, the 2,3,5-triphenyltetrazolium chloride (TTC) staining of rat brains has been extensively adopted to visualize the infarction, which is subsequently photographed for further processing. Two important tasks are to segment the brain regions and to compute the midline that separates the brain. This paper investigates automatic brain extraction and hemisphere segmentation algorithms in camera-based TTC-stained rat images. For rat brain extraction, a saliency region detection scheme on a superpixel image is exploited to extract the brain regions from the raw complicated image. Subsequently, the initial brain slices are refined using a parametric deformable model associated with color image transformation. For rat hemisphere segmentation, open curve evolution guided by the gradient vector flow in a medial subimage is developed to compute the midline. A wide variety of TTC-stained rat brain images captured by a smartphone were produced and utilized to evaluate the proposed segmentation frameworks. Experimental results on the segmentation of rat brains and cerebral hemispheres indicated that the developed schemes achieved high accuracy with average Dice scores of 92.33% and 97.15%, respectively. The established segmentation algorithms are believed to be potential and beneficial to facilitate experimental stroke study with TTC-stained rat brain images.
Funder
Ministry of Science and Technology of Taiwan
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献