Time-Lag Effect Between Sap Flow and Environmental Factors of Larix principis-rupprechtii Mayr

Author:

Hong LiuORCID,Guo Jianbin,Liu ZebinORCID,Wang Yanhui,Ma Jing,Wang Xiao,Zhang Ziyou

Abstract

A time lag between sap flux density (Js) and meteorological factors has been widely reported, but the controlling factors of the time lag are poorly understood. To interpret the time lag phenomenon systematically, thermal dissipation probes were placed into each of eight trees to measure the Js of Larix principis-rupprechtii Mayr. in the Liupan Mountains in Northwest China. Meteorological factors, including vapor pressure deficit (VPD), solar radiation (Rs) and air temperature (Ta), were synchronously measured with Js, and the dislocation contrast method was used to analyze the time lag between Js and the meteorological factors. The analysis indicated the following for the whole experimental period. (1) The time lag between Js and VPD (TLV) and the time lag between Js and Rs (TLR) both exhibited different patterns under different weather conditions, and Js could precede Rs on dry days. (2) Both TLV and TLR varied with the day of the year (DOY) throughout the experimental period; namely, both exhibited a decreasing tendency in September. (3) Reference crop evapotranspiration (ETref) had a greater influence on the time lag than the other meteorological factors and directly controlled the length and direction of TLV and TLR; relative extractable water (REW) modified the relationship between ETref and time lag. (4) The regression analysis results showed differences between the time lags and the environmental factors (ETref and REW) within different ranges of REW. Namely, TLR was better determined by ETref and REW when REW < 0.38, while TLV was better correlated with ETref and REW in the absence of soil water limitations (REW > 0.38). This project provided an important opportunity to advance the understanding of the interaction between plant transpiration and meteorological factors in a changing climate.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3