The Variation Driven by Differences between Species and between Sites in Allometric Biomass Models

Author:

Dutcă

Abstract

Background and Objectives: It is commonly assumed that allometric biomass models are species-specific and site-specific. However, the magnitude of species and site dependency in these models is not well-known. This study aims to investigate the variation in allometric models (i.e., aboveground biomass predicted by diameter at breast height and tree height) that has originated from the differences between tree species and between sites, thereby contributing to a better understanding of species and site-specificity issue in these models. Materials and Methods: The study is based on two large biomass datasets of 4921 and 5199 trees, from Eurasia and Canada. Using a nested ANOVA model on relative aboveground biomass residuals (with species and site as random effects), the proportion of variance explained by species or site was assessed by means of Variance Partition Coefficient (VPC). Results: The proportion of variance explained by species (VPCspecies = 42.56%, SE = 6.10% for Dataset 1 and VPCspecies = 47.54%, SE = 6.07% for Dataset 2) was larger than that explained by site (VPCsite = 20.08%, SE = 3.35% for Dataset 1 and VPCsite = 8.27%, SE = 1.38% for Dataset 2). The proportion of variance explained by site decreased by 24%–44% and the proportion of variance explained by species changed only slightly, when height is included in the allometric biomass models (i.e., models based on diameter at breast height alone, compared to models based on diameter at breast height and tree height). Conclusions: Allometric biomass models were more species-specific than they were site-specific. Therefore, the species (i.e., differences between species) seems to be a more important driver of variability in allometric models compared to site (i.e., differences between sites). Including height in allometric biomass models helped reduce the dependency of these models, on sites only.

Publisher

MDPI AG

Subject

Forestry

Reference55 articles.

1. Tree allometry and improved estimation of carbon stocks and balance in tropical forests

2. Improved allometric models to estimate the aboveground biomass of tropical trees

3. Manual for Building Tree Volume and Biomass Allometric Equations: From Field Measurement to Prediction;Picard,2012

4. Problems of Relative Growth;Huxley,1932

5. A General Model for the Origin of Allometric Scaling Laws in Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3