Performance Analysis of a Floating Photovoltaic System and Estimation of the Evaporation Losses Reduction

Author:

Majumder Arnas,Innamorati Roberto,Frattolillo AndreaORCID,Kumar AmitORCID,Gatto Gianluca

Abstract

Our research aims to achieve dual-positive effects in the presented study by raising photovoltaic (PV) panels over the water surface. With this, target experiments were primarily conducted to evaluate the efficiency increments of the PV panel while reducing its operating temperature through passive convective cooling obtained by raising it over water. The following objective was to estimate the reduction in water evaporation due to the shading effect induced by the panel placed inside the same basin. The performance of two PV panels was analyzed, one used for tests, the other as a reference. The characteristic curves were determined under the local environmental conditions of Cagliari, Italy. The true temperature reduction and efficiency gain calculations of panel P1 due to water cooling was achieved via the measured temperatures and calculated efficiencies of panel P2 at environmental conditions. The water height inside the basin was constantly monitored and maintained at approximately 7.5 cm below panel P1, which covered about 17% of the total water surface area. The presence of water underneath P1 leads to its efficiency increment on average by 2.7% (absolute) and about 17.22% (relative). At the same time, temperature of panel P1 dropped by 2.7 °C on average. The comparative water evaporation study conducted with and without P1 inside the basin showed a 30% reduction in water evaporation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3