Commercial Aircraft Electrification—Current State and Future Scope

Author:

Tom Liya,Khowja MuhammadORCID,Vakil GaurangORCID,Gerada Chris

Abstract

Electric and hybrid-electric aircraft propulsion are rapidly revolutionising mobility technologies. Air travel has become a major focus point with respect to reducing greenhouse gas emissions. The electrification of aircraft components can bring several benefits such as reduced mass, environmental impact, fuel consumption, increased reliability and quicker failure resolution. Propulsion, actuation and power generation are the three key areas of focus in more electric aircraft technologies, due to the increasing demand for power-dense, efficient and fault-tolerant flight components. The necessity of having environmentally friendly aircraft systems has promoted the aerospace industry to use electrically powered drive systems, rather than the conventional mechanical, pneumatic or hydraulic systems. In this context, this paper reviews the current state of art and future advances in more electric technologies, in conjunction with a number of industrially relevant discussions. In this study, a permanent magnet motor was identified as the most efficient machine for aircraft subsystems. It is found to be 78% and 60% more power dense than switch-reluctant and induction machines. Several development methods to close the gap between existing and future design were also analysed, including the embedded cooling system, high-thermal-conductivity insulation materials, thin-gauge and high-strength electrical steel and integrated motor drive topology.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference79 articles.

1. Aircraft Electrical Propulsion—The Next Chapter of Aviation?;Thomson,2017

2. Electrical Power Systemshttps://www.ati.org.uk/wp-content/uploads/2021/09/insight_07-electrical-power-systems.pdf

3. Electromechanical flight actuators for advanced flight vehicles

4. Electrical Power Generation in Aircraft: Review, Challenges, and Opportunities

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3