Author:
Pyo Min-Jung,Moon Seong-Won,Kim Tong-Seop
Abstract
Because of the increasing challenges raised by climate change, power generation from renewable energy sources is steadily increasing to reduce greenhouse gas emissions, especially CO2. However, this has escalated concerns about the instability of the power grid and surplus power generated because of the intermittent power output of renewable energy. To resolve these issues, this study investigates two technical options that integrate a power-to-gas (PtG) process using surplus wind power and the gas turbine combined cycle (GTCC). In the first option, hydrogen produced using a power-to-hydrogen (PtH) process is directly used as fuel for the GTCC. In the second, hydrogen from the PtH process is converted into synthetic natural gas by capturing carbon dioxide from the GTCC exhaust, which is used as fuel for the GTCC. An annual operational analysis of a 420-MW-class GTCC was conducted, which shows that the CO2 emissions of the GTCC-PtH and GTCC-PtM plants could be reduced by 95.5% and 89.7%, respectively, in comparison to a conventional GTCC plant. An economic analysis was performed to evaluate the economic feasibility of the two plants using the projected cost data for the year 2030, which showed that the GTCC-PtH would be a more viable option.
Funder
Korea Institute of Energy Technology Evaluation and Planning
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference49 articles.
1. Power system planning with increasing variable renewable energy: A review of optimization models
2. Wind Energy, Renewable Energy and the Environment;Ghassemi,2019
3. Renewable Energy Benefits Leveraging Local Capacity for Solar PV;Ferroukhi,2017
4. Renewables 2020 Analysis and Forecast to 2025https://iea.blob.core.windows.net/assets/1a24f1fe-c971-4c25-964a-57d0f31eb97b/Renewables_2020-PDF.pdf
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献