Increasing the Biogas Potential of Rapeseed Straw Using Pulsed Electric Field Pre-Treatment

Author:

Szwarc DawidORCID,Głowacka KatarzynaORCID

Abstract

Due to the high availability of lignocellulosic biomass, which can be obtained from terrestrial plants, agricultural waste biomass, and the agro-food, paper or wood industries, its use for energy production by methane fermentation is economically and environmentally justified. However, due to their complex structures, lignocellulosic substrates have a low conversion factor to biogas. Therefore, scientists are still working on the development of new methods of the pre-treatment of lignocellulosic materials that will increase the biogas productivity from lignocellulosic biomass. The presented research focuses on the use of a pulsed electric field (PEF) to disintegrate rapeseed straw prior to the methane fermentation process. Scanning electron microscopy observation showed that, in the disintegrated sample, the extent of damage to the plant tissue was more severe than in the control sample. In the sample disintegrated for 7 min, the chemical oxygen demand increased from 4146 ± 75 mg/L to 4920 ± 60 mg/L. The best result was achieved with a 5-min PEF pre-treatment. The methane production reached 290.8 ± 12.1 NmL CH4/g VS, and the biogas production was 478.0 ± 27.5 NmL/g VS; it was 14% and 15% higher, respectively, compared to the control sample.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3