Selecting Correct Methods to Extract Fuzzy Rules from Artificial Neural Network

Author:

Tan Xiao,Zhou Yuan,Ding Zuohua,Liu Yang

Abstract

Artificial neural network (ANN) inherently cannot explain in a comprehensible form how a given decision or output is generated, which limits its extensive use. Fuzzy rules are an intuitive and reasonable representation to be used for explanation, model checking, and system integration. However, different methods may extract different rules from the same ANN. Which one can deliver good quality such that the ANN can be accurately described by the extracted fuzzy rules? In this paper, we perform an empirical study on three different rule extraction methods. The first method extracts fuzzy rules from a fuzzy neural network, while the second and third ones are originally designed to extract crisp rules, which can be transformed into fuzzy rules directly, from a well-trained ANN. In detail, in the second method, the behavior of a neuron is approximated by (continuous) Boolean functions with respect to its direct input neurons, whereas in the third method, the relationship between a neuron and its direct input neurons is described by a decision tree. We evaluate the three methods on discrete, continuous, and hybrid data sets by comparing the rules generated from sample data directly. The results show that the first method cannot generate proper fuzzy rules on the three kinds of data sets, the second one can generate accurate rules on discrete data, while the third one can generate fuzzy rules for all data sets but cannot always guarantee the accuracy, especially for data sets with poor separability. Hence, our work illustrates that, given an ANN, one should carefully select a method, sometimes even needs to design new methods for explanations.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3