Development of a Backward–Forward Stochastic Particle Tracking Model for Identification of Probable Sedimentation Sources in Open Channel Flow

Author:

Liu Chelsie Chia-Hsin,Tsai Christina W.ORCID,Huang Yu-Ying

Abstract

As reservoirs subject to sedimentation, the dam gradually loses its ability to store water. The identification of the sources of deposited sediments is an effective and efficient means of tackling sedimentation problems. A state-of-the-art Lagrangian stochastic particle tracking model with backward–forward tracking methods is applied to identify the probable source regions of deposited sediments. An influence function is introduced into the models to represent the influence of a particular upstream area on the sediment deposition area. One can then verify if a specific area might be a probable source by cross-checking the values of influence functions calculated backward and forward, respectively. In these models, the probable sources of the deposited sediments are considered to be in a grid instead of at a point for derivation of the values of influence functions. The sediment concentrations in upstream regions must be known a priori to determine the influence functions. In addition, the accuracy of the different types of diffusivity at the water surface is discussed in the study. According to the results of the case study of source identification, the regions with higher sediment concentrations computed by only backward simulations do not necessarily imply a higher likelihood of sources. It is also shown that from the ensemble results when the ensemble mean of the concentration is higher, the ensemble standard deviation of the concentration is also increased.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference40 articles.

1. Hydrology, Hydraulics, and Sediment Studies for the Matilija Dam Ecosystem Restoration Projecthttps://calisphere.org/item/ark:/86086/n2nz879g/

2. Staff Recommendation, May 24, 2007: San Clemente Dam Removal Project Technical Assistancehttps://calisphere.org/item/ark:/86086/n2p84bk6/

3. Upstream Sediment‐Control Dams: Five Decades of Experience in the Rapidly Eroding Dahan River Basin, Taiwan

4. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents

5. Silenced Rivers: The Ecology and Politics of Large Dams;McCully,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3