Computational Statistics and Machine Learning Techniques for Effective Decision Making on Student’s Employment for Real-Time

Author:

Kumar DeepakORCID,Verma ChamanORCID,Singh Pradeep KumarORCID,Raboaca Maria SimonaORCID,Felseghi Raluca-AndreeaORCID,Ghafoor Kayhan Zrar

Abstract

The present study accentuated a hybrid approach to evaluate the impact, association and discrepancies of demographic characteristics on a student’s job placement. The present study extracted several significant academic features that determine the Master of Business Administration (MBA) student placement and confirm the placed gender. This paper recommended a novel futuristic roadmap for students, parents, guardians, institutions, and companies to benefit at a certain level. Out of seven experiments, the first five experiments were conducted with deep statistical computations, and the last two experiments were performed with supervised machine learning approaches. On the one hand, the Support Vector Machine (SVM) outperformed others with the uppermost accuracy of 90% to predict the employment status. On the other hand, the Random Forest (RF) attained a maximum accuracy of 88% to recognize the gender of placed students. Further, several significant features are also recommended to identify the placement of gender and placement status. A statistical t-test at 0.05 significance level proved that the student’s gender did not influence their offered salary during job placement and MBA specializations Marketing and Finance (Mkt&Fin) and Marketing and Human Resource (Mkt&HR) (p > 0.05). Additionally, the result of the t-test also showed that gender did not affect student’s placement test percentage scores (p > 0.05) and degree streams such as Science and Technology (Sci&Tech), Commerce and Management (Comm&Mgmt). Others did not affect the offered salary (p > 0.05). Further, the χ2 test revealed a significant association between a student’s course specialization and student’s placement status (p < 0.05). It also proved that there is no significant association between a student’s degree and placement status (p > 0.05). The current study recommended automatic placement prediction with demographic impact identification for the higher educational universities and institutions that will help human communities (students, teachers, parents, institutions) to prepare for the future accordingly.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3