Ordering of Omics Features Using Beta Distributions on Montecarlo p-Values

Author:

Riffo-Campos Angela L.ORCID,Ayala GuillermoORCID,Domingo JuanORCID

Abstract

The current trend in genetic research is the study of omics data as a whole, either combining studies or omics techniques. This raises the need for new robust statistical methods that can integrate and order the relevant biological information. A good way to approach the problem is to order the features studied according to the different kinds of data so a key point is to associate good values to the features that permit us a good sorting of them. These values are usually the p-values corresponding to a hypothesis which has been tested for each feature studied. The Montecarlo method is certainly one of the most robust methods for hypothesis testing. However, a large number of simulations is needed to obtain a reliable p-value, so the method becomes computationally infeasible in many situations. We propose a new way to order genes according to their differential features by using a score defined from a beta distribution fitted to the generated p-values. Our approach has been tested using simulated data and colorectal cancer datasets from Infinium methylationEPIC array, Affymetrix gene expression array and Illumina RNA-seq platforms. The results show that this approach allows a proper ordering of genes using a number of simulations much lower than with the Montecarlo method. Furthermore, the score can be interpreted as an estimated p-value and compared with Montecarlo and other approaches like the p-value of the moderated t-tests. We have also identified a new expression pattern of eighteen genes common to all colorectal cancer microarrays, i.e., 21 datasets. Thus, the proposed method is effective for obtaining biological results using different datasets. Our score shows a slightly smaller type I error for small sizes than the Montecarlo p-value. The type II error of Montecarlo p-value is lower than the one obtained with the proposed score and with a moderated p-value, but these differences are highly reduced for larger sample sizes and higher false discovery rates. Similar performances from type I and II errors and the score enable a clear ordering of the features being evaluated.

Funder

Ministerio de Economía y Competitividad

Chilean ANID/FONDECYT-POSTDOCTORADO

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference41 articles.

1. Stability and aggregation of ranked gene lists

2. Finding Genetic Overlaps Among Diseases Based on Ranked Gene Lists

3. Permutation p-values Should Never Be Zero: Calculating Exact P-values When Permutations Are Randomly Drawn;Smyth;Stat. Appl. Genet. Mol. Biol.,2010

4. Introducing Monte Carlo Methods with R

5. Randomization, Bootstrap and Monte Carlo Methods in Biology;Manly,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3