Method of Eliminating Helicopter Vibration Interference Magnetic Field with a Pair of Magnetometers

Author:

Feng YongqiangORCID,Zheng YaoxinORCID,Chen LuzhaoORCID,Qu Xiaodong,Fang Guangyou

Abstract

The low-frequency electromagnetic fields and magnetic anomalies generated by ships and other underwater platforms are widely recognized as important features for ocean target detection. Low-frequency magnetic fields and anomalies are typically measured by optically pumped magnetometers installed on aircraft. However, the interference that is generated by the aircraft platform may significantly affect the detection performance. The traditional aeromagnetic compensation model has a good effect on eliminating the interference magnetic field that is caused by the carrier attitude variation. Usually, the magnetometer is fixed at the top of a long probe on the aircraft to avoid the influence from the main body in the aircraft. However, the probe is sensitive to external vibrations, and vibration-induced magnetic interference can occur in the measurements. The magnetometer is especially easily affected by the interference magnetic field, including the vibration frequency and harmonic frequency of the probe, in a moving platform, such as a helicopter. These interference fields usually have independent frequency characteristics that can be eliminated by compensation methods. In this paper, we propose a method based on the improved coherent noise suppression method with a pair of magnetometers to eliminate the effects from these magnetic field disturbances and improve the detection performance of the measurement system. The results of the flight experiment show that the method can effectively eliminate low-frequency vibration interference and improve the detection ability of weak signals from targets.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3