Abstract
Accurate detection of COVID-19 is of immense importance to help physicians intervene with appropriate treatments. Although RT-PCR is routinely used for COVID-19 detection, it is expensive, takes a long time, and is prone to inaccurate results. Currently, medical imaging-based detection systems have been explored as an alternative for more accurate diagnosis. In this work, we propose a multi-level diagnostic framework for the accurate detection of COVID-19 using X-ray scans based on transfer learning. The developed framework consists of three stages, beginning with a pre-processing step to remove noise effects and image resizing followed by a deep learning architecture utilizing an Xception pre-trained model for feature extraction from the pre-processed image. Our design utilizes a global average pooling (GAP) layer for avoiding over-fitting, and an activation layer is added in order to reduce the losses. Final classification is achieved using a softmax layer. The system is evaluated using different activation functions and thresholds with different optimizers. We used a benchmark dataset from the kaggle website. The proposed model has been evaluated on 7395 images that consist of 3 classes (COVID-19, normal and pneumonia). Additionally, we compared our framework with the traditional pre-trained deep learning models and with other literature studies. Our evaluation using various metrics showed that our framework achieved a high test accuracy of 99.3% with a minimum loss of 0.02 using the LeakyReLU activation function at a threshold equal to 0.1 with the RMSprop optimizer. Additionally, we achieved a sensitivity and specificity of 99 and F1-Score of 99.3% with only 10 epochs and a 10−4 learning rate.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献