Abstract
In intercity expressway traffic, the multiplicity of available routes leads to randomness in exit selection. Random exit selection by drivers is hard to observe, and thus it is a challenge to model intercity expressway traffic sufficiently. In this paper, we developed a Random Quantum Traffic Model (RQTM), which modeled the stochastic traffic fluctuation caused by random exit selection and the residual regularity fluctuation with the quantum walk and autoregressive moving average model (ARMA), respectively. The RQTM considered the random exit selection of a driver as a quantum stochastic process with a dynamic probability function. A quantum walk was applied to update the probability function, which simulated when and where a driver will leave the expressway. We validated our model with hourly traffic data from seven exits from the Nanjing–Changzhou expressway in eastern China. For the seven exits, the coefficients of determination of the RQTM ranged from 0.5 to 0.85. Compared with the classical random walk and the ARMA model, the coefficients of determination were increased by 21.28% to 104.98%, and the relative mean square error decreased by 11.61% to 32.92%. We conclude that the RQTM provides new potential for modeling traffic dynamics with consideration of unobservable random driver decision making.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献