Behaviour of Square and Rectangular Tunnels Using an Improved Finite Element Method

Author:

Nguyen Chi Thanh,Do Ngoc AnhORCID,Dias DanielORCID,Pham Van ViORCID,Alexandr Gospodarikov

Abstract

Due to its advantages (fast and accurate calculations), the Hyperstatic Reaction Method (HRM) was used to calculate the internal forces of circular tunnel linings in former works. This paper presents an improved HRM method that is developed to estimate the internal forces induced in square and rectangular tunnel linings. Based on the comparison of the internal forces induced in these linings obtained from the HRM method and the finite element method (FEM), the improved HRM method was validated. An extensive parametric analysis of the tunnel lining and ground parameters was then carried out using both the HRM and FEM. The results indicated a great influence of the lateral earth pressure coefficient K0, and the tunnel lining flexibility ratio F on the internal forces induced. Accordingly, the bending moments M, normal forces N, and shear forces T, induced in the tunnel lining decrease when the flexibility ratio of tunnel lining F increases. The maximum bending moment is observed at the tunnel sides that are perpendicular with the larger principal stress direction.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Seismic Design of Tunnels: A State-of-the-Art Approach;Wang,1993

2. Stresses in linings of bored tunnels

3. Seismically induced racking of tunnel linings

4. A new numerical approach to the hyperstatic reaction method for segmental tunnel linings

5. The behaviour of the segmental tunnel lining studied by the hyperstatic reaction method;Do;Eur. J. Environ. Civ. Eng.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Underground Space Technology;Applied Sciences;2022-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3