Generation of Intense and Temporally Clean Pulses—Contrast Issues of High-Brightness Excimer Systems

Author:

Szatmári Sándor,Dajka Rita,Almási Gábor,Földes István B.

Abstract

In high-brightness excimer systems, the direct amplification of short pulses allows temporal filters to be integral parts of the ultraviolet (UV) amplifier chain, where the only origin of the noise is the amplified spontaneous emission (ASE), generated by the amplifier(s) following the filter. The ASE, however, develops faster than the short main pulse; in this paper, the dynamic short- and long-pulse amplification properties of KrF, XeCl and XeF excimers are studied, with special emphasis on the temporal contrast. It was found that, beyond the saturation of amplification, the relaxation of the B state in KrF, together with the contribution of the absorption of the transiently populated X state in XeCl and XeF, are the main limitations for both the extraction efficiency and the contrast. For all excimers, the stimulated transition rates and the dependence of the achievable contrast on the level of saturation were derived. Local quantities were introduced to characterize the deterioration of the contrast for a unit gain length of KrF amplifiers. A KrF power amplifier of limited gain (G ≈ 3), following the newly introduced nonlinear Fourier filter, is capable of reaching contrast levels beyond the previously reported 1011–1012.

Funder

European Social Fund

Ministry of Innovation and Technology, Hungary

European Union

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3