The Effects of Photobioreactor Type on Biomass and Lipid Production of the Green Microalga Monoraphidium pusillum in Laboratory Scale

Author:

Bácsi IstvánORCID,Tóthfalusi Fruzsina,Márton Kamilla,B-Béres Viktória,Gonda SándorORCID

Abstract

Mass production of microorganisms, algae among them, for new bioactive compounds and renewable innovative products is a current issue in biotechnology. The greatest challenge of basic research on this topic is to find the best solution for both physiology and scalability. In this study, the main goal was to highlight the contradictions of physiological and technological optimization in the same, relatively small, laboratory scale. The green alga Monoraphidium pusillum (Printz) Komárková-Legnorová was cultured in a conventional Erlenmeyer flask (as air bubbled in a tank-type photobioreactor) and in a hybrid (fermenter type + helical tubular type) photobioreactor of the same volume (2.8 L). Higher cell numbers from 1.7–2.3-fold, 2–2.8-fold higher dry masses, and 1.9–2.6-fold higher total lipid contents (mg·L−1) were measured in the tank reactor than in the hybrid reactor. Cultures in the conventional tank reactor were characterized with better nutrient utilization (42.8–77.7% higher phosphate uptake) and more diverse lipid composition than in the hybrid reactor. The study highlights that well-scalable arrangements and settings could be not optimal (or unsuitable in some cases) from a physiological point of view. The results suggest certain developmental directions for complex, well-scalable devices and highlight the importance of testing the gained physiological optima on these systems.

Funder

National Research, Development and Innovation Office

National Research, Development and Innovation Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3