Light-Weight Topological Optimization for Upper Arm of an Industrial Welding Robot

Author:

Yao ,Zhou ,Lin ,Tang

Abstract

To reduce weight and improve overall performance of the industrial welding robot, light-weight design using the finite element method and structural topological optimization is presented in this paper. The work analyzed an upper arm of an industrial welding robot in the most unfavorable working condition, both under static and dynamic working situations, using ABAQUS and ADAMS software tools. Then the Tosca unit in ABAQUS was employed to accomplish the structural topological optimization, in order to reduce weight and improve the natural frequencies under the situation of low orders. The analyses results showed that the actual weight had been reduced to 17.9%, and the natural frequencies in low orders had increased. The maximum Mises stress, tensile stress, and elastic displacement of the gyration center had decreased. Lastly, an actual product was produced according to the model obtained from preceding analyses. The experiments of the repeatability tests showed that the overall performance of the optimized upper arm had been improved when compared to the original one. This research can present references and foundations for the kinetic analyses under the static and dynamic working conditions, and structural topological optimization designs for relative industrial welding robots.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference34 articles.

1. Independent load carrying and measurement manipulator robot arm for improved payload to mass ratio

2. Overview of recent advances of process analysis and quality control in resistance spot welding

3. Deformation Control of Rheological Food Dough using a Forming Process Model;Tokumoto,2002

4. Toward a Robot-Assisted Breast Intervention System

5. An Interactive Simulator for Deformable Linear Objects Manipulation Planning;Alvarez,2016

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3