Effects of Hardening Model and Variation of Elastic Modulus on Springback Prediction in Roll Forming

Author:

Naofal ,Naeini ,Mazdak

Abstract

In this paper, the uniaxial loading–unloading–reloading (LUR) tensile test was conducted to determine the elastic modulus depending on the plastic pre-strain. To obtain the material parameters and parameter of Yoshida-Uemori’s kinematic hardening models, tension–compression experiments were carried out. The experimental results of the cyclic loading tests together with the numerically predicted response of the plastic behavior were utilized to determine the parameters using the Ls-opt optimization tool. The springback phenomenon is a critical issue in industrial sheet metal forming processes, which could affect the quality of the product. Therefore, it is necessary to represent a method to predict the springback. To achieve this aim, the calibrated plasticity models based on appropriate tests (cyclic loading) were implemented in commercial finite element (FE) code Ls-dyna to predict the springback in the roll forming process. Moreover, appropriate experimental tests were performed to validate the numerical results, which were obtained by the proposed model. The results showed that the hardening models and the variation of elastic modulus have significant impact on springback accuracy. The Yoshida-Uemori’s hardening represents more accurate prediction of the springback during the roll forming process when compared to isotropic hardening. Using the chord modulus to determine the reduction in elastic modulus gave more accurate results to predict springback when compared with the unloading and loading modulus to both hardening models.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3