Confining Pressure Forecasting of Shield Tunnel Lining Based on GRU Model and RNN Model

Author:

Wang Min1,Ye Xiao-Wei2ORCID,Jia Jin-Dian2,Ying Xin-Hong2,Ding Yang3ORCID,Zhang Di4,Sun Feng4

Affiliation:

1. Polytechnic Institute, Zhejiang University, Hangzhou 310058, China

2. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China

3. Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China

4. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, China

Abstract

The confining pressure has a great effect on the internal force of the tunnel. During construction, the confining pressure which has a crucial impact on tunnel construction changes due to the variation of groundwater level and applied load. Therefore, the safety of tunnels must have the magnitude of confining pressure accurately estimated. In this study, a complete tunnel confining pressure time axis was obtained through high-frequency field monitoring, the data are segmented into a training set and a testing set. Using GRU and RNN models, a confining pressure prediction model was established, and the prediction results were analyzed. The results indicate that the GRU model has a fast-training speed and higher accuracy. On the other hand, the training speed of the RNN model is slow, with lower accuracy. The dynamic characteristics of soil pressure during tunnel construction require accurate prediction models to maintain the safety of the tunnel. The comparison between GRU and RNN models not only highlights the advantages of the GRU model but also emphasizes the necessity of balancing speed accuracy in tunnel construction confining pressure prediction modeling. This study is helpful in improving the understanding of soil pressure dynamics and developing effective prediction tools to promote safer and more reliable tunnel construction practices.

Funder

National Science Foundation of China grant funded by the China government

National Key R&D Program of China grant funded by the China government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3