Affiliation:
1. Department of Electronics and Information Convergence Engineering, Kyunghee University, Yongin 17104, Republic of Korea
2. Department of Biomedical Engineering, Kyunghee University, Yongin 17104, Republic of Korea
Abstract
Silicon nanowires (SiNWs) are emerging as versatile components in the fabrication of sensors for implantable medical devices because of their exceptional electrical, optical, and mechanical properties. This paper presents a novel top-down fabrication method for vertically stacked SiNWs, eliminating the need for wet oxidation, wet etching, and nanolithography. The integration of these SiNWs into body channel communication (BCC) circuits was also explored. The fabricated SiNWs were confirmed to be capable of forming arrays with multiple layers and rows. The SiNW-based pH sensors demonstrated a robust response to pH changes, and when tested with BCC circuits, they showed that it was possible to quantize based on pH when transmitting data through the human body. This study successfully developed a novel method for SiNW fabrication and integration into BCC circuits, which could lead to improvements in the reliability and efficiency of implantable medical sensors. The findings demonstrate significant potential for bioelectronic applications and real-time biochemical monitoring.
Funder
National Research Foundation of Korea
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献