Interacting Multiple Model Estimators for Fault Detection in a Magnetorheological Damper

Author:

Lee Andrew Sanghyun1,Wu Yuandi2,Gadsden Stephen Andrew2ORCID,AlShabi Mohammad3ORCID

Affiliation:

1. College of Engineering and Physical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada

2. Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada

3. Department of Mechanical and Nuclear Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates

Abstract

This paper proposes a novel estimator for the purpose of fault detection and diagnosis. The interacting multiple model (IMM) strategy is effective for estimating the behaviour of systems with multiple operating modes. Each mode corresponds to a distinct mathematical model and is subject to a filtering process. This paper applies various model-based filters in combination with the IMM strategy. One such estimator employs the recently introduced extended sliding innovation filter (ESIF) known as the IMM-ESIF. The ESIF is an extension of the sliding innovation filter for nonlinear systems based on the sliding mode concept. In the presence of modeling uncertainties, the ESIF has been proven to be more robust compared to methods such as the extended Kalman filter (EKF). The novel IMM-ESIF strategy is also compared with the IMM strategy, which incorporates the unscented Kalman filter (UKF), referred to herein as IMM-UKF. While EKF uses Taylor series approximation to linearize the system model, the UKF uses sigma point to calculate the system’s mean and covariance. The methods were applied to an experimental magnetorheological (MR) damper setup, which was designed for testing control and estimation theory. Magnetorheological dampers exhibit a diverse array of applications in the automotive and aerospace sectors, with particular relevance to attenuating vibrations through adaptive suspension systems. Applied to a magnetorheological (MR) damper with distinct operating modes determined by the damper’s current, the results showcase the effectiveness of IMM-ESIF. In mixed operational conditions, IMM-ESIF demonstrates a notable 80% to 90% reduction in estimation error compared to its counterparts. Furthermore, it exhibits a 4% to 5% enhancement in correctly classifying operational modes, establishing IMM-ESIF as a promising and efficient alternative for adaptive estimation in electromechanical systems. The improved accuracy in estimating the system’s behaviour, even amidst uncertainties and mixed operational scenarios, signifies the potential of IMM-ESIF to significantly enhance the overall robustness and efficiency of estimations.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3