Differential Responses of Soil Extracellular Enzyme Activity and Stoichiometric Ratios under Different Slope Aspects and Slope Positions in Larix olgensis Plantations

Author:

Wang MingweiORCID,Ji LiORCID,Shen Fangyuan,Meng Jun,Wang Junlu,Shan ChengfengORCID,Yang Lixue

Abstract

Soil enzymes play an important role in nutrient biogeochemical cycling in terrestrial ecosystems. Previous studies have emphasized the variability of soil enzyme activities and stoichiometric ratios in forest ecosystems in northern China. However, much less is known about soil enzyme activity, enzymatic stoichiometry ratios and microbial nutrient limitations in Larix olgensis plantations under different microsites. In this study, four specific extracellular enzyme activities (β-glucosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase, Acid phosphatase), and soil physicochemical properties were measured in the 0–20 cm soil layer. The results showed that slope aspect and slope position had a significant effect on soil moisture, soil bulk density, soil porosity, soil organic matter, ammonium nitrogen and nitrate-nitrogen. Meanwhile, slope aspect and slope position had a significant effect on β-glucosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase and Acid phosphatase activities while the highest activity of β-glucosidase (or β-1,4-N-acetylglucosaminidase), L-leucine aminopeptidase, and Acid phosphatase was observed in the upper slope of the east, the upper slope of the south, and the upper slope of the north; soil porosity, pH and soil organic matter were the main factors affecting soil extracellular enzyme activities. The log-transformed ratios of soil C-, N-, and P-acquiring enzyme activities were 1.00:1.06:1.17, indicating that soil microbial growth in this region was limited by N and P. Therefore, these findings highlight that N and P inputs should be considered in the management of L. olgensis plantations to improve soil microbial enzyme activity, alleviating N and P limitations.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3