An Adaptive Route Planning Method of Connected Vehicles for Improving the Transport Efficiency

Author:

Liu BaojuORCID,Long JunORCID,Deng Min,Yang Xuexi,Shi Yan

Abstract

In recent years, the route-planning problem has gained increased interest due to the development of intelligent transportation systems (ITSs) and increasing traffic congestion especially in urban areas. An independent route-planning strategy for each in-vehicle terminal improves its individual travel efficiency. However, individual optimal routes pursue the maximization of individual benefit and may contradict the global benefit, thereby reducing the overall transport efficiency of the road network. To improve traffic efficiency while considering the travel time of individual vehicles, we propose a new dynamic route-planning method by innovatively introducing a bidding mechanism in the connected vehicle scenario for the first time. First, a novel bidding-based dynamic route planning is proposed to formulate vehicle routing schemes for vehicles affected by congestion via the bidding process. Correspondingly, a bidding price incorporating individual and global travel times was designed to balance the travel benefits of both objectives. Then, in the bidding process, a new local search algorithm was designed to select the winning routing scheme set with the minimum bidding price. Finally, the proposed method was tested and validated through case studies of simulated and actual driving scenarios to demonstrate that the bidding mechanism would be conducive to improving the transport efficiency of road networks in large-scale traffic flow scenarios. This study positively contributes to the research and development of traffic management in ITSs.

Funder

National Natural Science Foundation of China

Key Program of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3