Abstract
With the development of urbanization and the expansion of floating populations, rental housing has become an increasingly common living choice for many people, and housing rental prices have attracted great attention from individuals, enterprises and the government. The housing rental prices are principally estimated based on structural, locational and neighborhood variables, among which the relationships are complicated and can hardly be captured entirely by simple one-dimensional models; in addition, the influence of the geographic objects on the price may vary with the increase in their quantities. However, existing pricing models usually take those structural, locational and neighborhood variables as one-dimensional inputs into neural networks, and often neglect the aggregated effects of geographical objects, which may lead to fluctuating rental price estimations. Therefore, this paper proposes a rental housing price model based on the convolutional neural network (CNN) and the synthetic spatial density of points of interest (POIs). The CNN can efficiently extract the complex characteristics among the relevant variables of housing, and the two-dimensional locational and neighborhood variables, based on the synthetic spatial density, effectively reflect the aggregated effects of the urban facilities on rental housing prices, thereby improving the accuracy of the model. Taking Wuhan, China, as the study area, the proposed method achieves satisfactory and accurate rental price estimations (coefficient of determination (R2) = 0.9097, root mean square error (RMSE) = 3.5126) in comparison with other commonly used pricing models.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献