Abstract
Address matching continues to play a central role at various levels, through geocoding and data integration from different sources, with a view to promote activities such as urban planning, location-based services, and the construction of databases like those used in census operations. However, the task of address matching continues to face several challenges, such as non-standard or incomplete address records or addresses written in more complex languages. In order to better understand how current limitations can be overcome, this paper conducted a systematic literature review focused on automated approaches to address matching and their evolution across time. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, resulting in a final set of 41 papers published between 2002 and 2021, the great majority of which are after 2017, with Chinese authors leading the way. The main findings revealed a consistent move from more traditional approaches to deep learning methods based on semantics, encoder-decoder architectures, and attention mechanisms, as well as the very recent adoption of hybrid approaches making an increased use of spatial constraints and entities. The adoption of evolutionary-based approaches and privacy preserving methods stand as some of the research gaps to address in future studies.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献