Predictive Modeling and Analysis of Material Removal Characteristics for Robotic Belt Grinding of Complex Blade

Author:

Jia Haolin1,Lu Xiaohui2,Cai Deling3,Xiang Yingjian1,Chen Jiahao1,Bao Chengle3

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Liuxia Street, Xihu District, Hangzhou 310023, China

2. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China

3. R&D Engineering Department, Wahaha Intelligent Robotics, Xiaoshan Economic and Technological Development Zone, Xiaoshan District, Hangzhou 311231, China

Abstract

High-performance grinding has been converted from traditional manual grinding to robotic grinding over recent years. Accurate material removal is challenging for workpieces with complex profiles. Over recent years, digital processing of grinding has shown its great potential in the optimization of manufacturing processes and operational efficiency. Thus, quantification of the material removal process is an inevitable trend. This research establishes a three-dimensional model of the grinding workstation and designs the blade back arc grinding trajectory. A prediction model of the blade material removal depth (MRD) is established, based on the Adaptive Neuro-Fuzzy Inference System (ANFIS). Experiments were carried out using the Taguchi method to investigate how certain elements might affect the outcomes. An Analysis of Variance (ANOVA) was used to study the effect of abrasive belt grinding characteristics on blade material removal. The mean absolute percent error (MAPE) of the established ANFIS model, after training and testing, was 3.976%, demonstrating superior performance to the reported findings, which range from 4.373% to 7.960%. ANFIS exhibited superior outcomes, when compared to other prediction models, such as random forest (RF), artificial neural network (ANN), and support vector regression (SVR). This work can provide some sound guidance for high-precision prediction of material removal amounts from surface grinding of steam turbine blades.

Funder

Zhejiang Province’s “Leading Goose” R&D Program: Key Technology and System Engineering R&D Project of Surface Grinding and Polishing Robot, China,

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3