Effects of Granular Gradation on the Compressibility and Permeability of Lime-Stabilized Slurry with High Water Content

Author:

Weng Zhenqi1,Zheng Yueyue1,Zhu Qinhao2,Sun Honglei1,Ni Dingyu3

Affiliation:

1. School of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China

2. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100091, China

3. School of Civil Engineering, Wenzhou Vocational and Technical College, Wenzhou 325035, China

Abstract

Lime stabilization is one of the main methods to achieve efficient treatment and resource utilization of waste slurry. This study investigated the compressibility and permeability of lime-stabilized slurry with different granular gradations based on the ultra-low stress consolidation/permeability test and identified the stabilization mechanism of lime-stabilized slurry with high water content by mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) tests. The test results indicated that (i) lime-stabilized slurry with high water content showed obvious evidence of remolded yield stress and (ii) the remolded yield stress increased with the increasing lime dosage. Lime was found to induce the flocculation of clay to form aggregates through ion exchange, further stabilizing them through the volcanic ash reaction, thus increasing the remolded yield strength of the stabilized slurry. The remolded yield stress of the Hangzhou stabilized slurry with a 1% lime dosage was shown to increase from 0 kPa to 5.71 kPa, while the compression index CS1 decreased by 68.8%. In addition, the pore volumes and diameters of the soil increased once the flocculation was completed, leading to increased permeability of the stabilized slurry. It was, however, observed that the stabilized slurry permeability did not increase infinitely with the increasing lime dosage, but on the contrary decreased once the lime dosage exceeded a certain threshold value. The permeability of the Hangzhou stabilized slurry was found to be one order of magnitude higher than that of the remolded slurry at the optimal dosage. Whereas for slurry with high clay content, the recommended lime dosage was established to be 2% to reduce its compressibility or enhance its permeability; for slurry with high silt content, the recommended lime dosage was ascertained to be 3%.

Funder

Project of Lishui Science & Technology Bureau

Research Project of Wenzhou Science & Technology Bureau

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3