Comparative Studies on Steel Corrosion Resistance of Different Inhibitors in Chloride Environment: The Effects of Multi-Functional Protective Film

Author:

Cui Lei1,Gao Xiaojian12ORCID,Hang Meiyan3,Chen Tiefeng1

Affiliation:

1. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China

2. Key Laboratory of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China

3. School of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

Abstract

A corrosion inhibitor was widely used to improve corrosion resistance of steel bar in reinforcement concrete structure. A kind of multi-component corrosion inhibitor, which is composed of organic and inorganic substances, was developed in this research. This corrosion inhibitor was comparatively studied with various other inhibitors by using open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) methods. The results show that the OCP values and charge transfer resistance (calculated by EIS curves) of the multi-component corrosion inhibitor remain, respectively, as high as −0.45 V and 932.19 kΩ·cm−2 after 60 days immersion, which are significantly better than other groups. Wide passivation interval and various peaks in cyclic voltammograms (CV) were applied to analyze the mechanism of adsorption (organic substance) and oxidation–reduction reactions (inorganic substance). The functional groups -OH in triethanolamine (TEA) and tri-isopropanolamine (TIPA) bond to the steel bar surface quickly, behaving as an adsorbent of organic substance in early age. An additional protective precipitate related to the reactions of Fe3+ was formed by inorganic substances (Fe2(MoO4)3 and FePO4), which is consistent with the EIS results and equivalent electrochemical circuits. As an eco-friendly substitute, multi-component corrosion inhibitors possess similar or even better protecting effects on steel bars in comparison to calcium nitrite. In addition, the concept of a “multi-functional protective film” was proposed, providing a new insight to achieve modified anti-corrosion capacity of inhibitors.

Funder

National Natural Science Foundation of China

Major Project of Ningbo Science and Technology Innovation 2025

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3