VR-PEKS: A Verifiable and Resistant to Keyword Guess Attack Public Key Encryption with Keyword Search Scheme

Author:

Tang Yingying1,Chen Yuling1ORCID,Luo Yun1,Dong Sen1,Li Tao1ORCID

Affiliation:

1. State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China

Abstract

Public key encryption with keyword search (PEKS) allows users to perform keyword searches of ciphertext on untrusted cloud storage servers, protecting data privacy while sharing data. However, it faces several security problems in practical applications. First, an attacker can launch a keyword guessing attack to obtain keywords of interest to users, causing the leakage of their sensitive information. Second, untrusted cloud servers may return incorrect or incomplete results. In addition, with the continuous development of quantum computers, existing PEKS schemes face the problem of quantum attacks. Since cloud servers are mostly untrusted, verifiable search has become a hot research topic among scholars. However, most of the current schemes are based on bilinear pairing constructions, which are vulnerable to quantum attacks. To solve these problems, we propose a new ciphertext retrieval scheme based on fully homomorphic encryption (FHE), called VR-PEKS. This scheme implements verifiable search and is able to solve the problems of keyword guessing attacks and quantum attacks. We propose to improve the security of the scheme by using the oblivious pseudorandom function to randomize keywords and then encrypt them using FHE. An encrypted verified index structure is constructed and exposed by the data owner, enabling the data recipient to achieve verification of the correctness and integrity of the retrieved results without relying on a trusted third party. We demonstrate the security of the proposed scheme in a stochastic prediction model, and prove that our scheme satisfies keyword ciphertext indistinguishability and keyword trapdoor indistinguishability under adaptive keyword selection attacks. The comparison shows that our scheme is secure and feasible.

Funder

National Natural Science Foundation of China

Education Department of Guizhou Province

Vocational Education Science Research Project of the Education Department of Guizhou Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3