Possibilities of Detecting Damage Due to Osmosis of GFRP Composites Used in Marine Applications

Author:

Swiderski Waldemar1ORCID,Strag Martyna1

Affiliation:

1. Military Institute of Armament Technology, Prymasa Stefana Wyszynskiego 7 St., 05-220 Zielonka, Poland

Abstract

The marine composites market is driven by the increasing demand for lightweight, corrosion-resistant, and impact-resistant boats. Polymer matrix composites are currently the most popular composite material in marine applications. Fiberglass composites are practically the main type of fiber composites that are used extensively in marine applications. Due to the aggressive sea environment, composite structural elements of ships are exposed to damage due to the phenomenon of osmosis. This damage is also favored by defects that result from impacts and technological errors during the production of these elements. Non-destructive testing methods are necessary to detect damage in the internal structure of the composite. The paper presents a numerical analysis of the possibility of using vibrothermography in the detection of defects in glass–fiber reinforced laminates in marine applications. Numerical simulations have shown that the most favorable method for detecting defects will be acoustic waves. This is an unusual application because, as a rule, the range of ultrasonic waves is used in vibrothermography. In our further works, it is planned to verify numerical calculations through experimental research. The applicability of the terahertz technique was also assessed. During the experimental testing, all defects in the test sample of the glass–fiber reinforced composite were detected using this technique. The presented results indicate the applicability of the presented methods for the detection of defects in composites used in marine applications.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference28 articles.

1. Chawla, K.K. (2012). Composite Materials, Science and Engineering, Springer.

2. Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact;Sarasini;Compos. Part B Eng.,2016

3. Prediction of residual strength after impact of CFRP composite structures;Koo;Int. J. Precis. Eng. Manuf.,2014

4. Impact damage and residual strength predictions of 2D woven SiC/SiC composites;Li;Finite Elem. Anal. Des.,2016

5. (2022, October 06). krzysztofkluza.pl. Available online: https://krzysztofkluza.pl/osmoza/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3