Gelation in Alginate-Based Magnetic Suspensions Favored by Poor Interaction among Sodium Alginate and Embedded Particles

Author:

Safronov Alexander P.12ORCID,Rusinova Elena V.1,Terziyan Tatiana V.1,Zemova Yulia S.1,Kurilova Nadezhda M.1,Beketov Igor. V.12,Zubarev Andrey Yu.1ORCID

Affiliation:

1. Institute of Natural Sciences and Mathematics, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia

2. Institute of Electrophysics UB RAS, 106 Amundsen Str., 620016 Yekaterinburg, Russia

Abstract

Alginate gels are extensively tested in biomedical applications for tissue regeneration and engineering. In this regard, the modification of alginate gels and solutions with dispersed magnetic particles gives extra options to control the rheo-elastic properties both for the fluidic and gel forms of alginate. Rheological properties of magnetic suspensions based on Na-alginate water solution with embedded magnetic particles were studied with respect to the interfacial adhesion of alginate polymer to the surface of particles. Particles of magnetite (Fe3O4), metallic iron (Fe), metallic nickel (Ni), and metallic nickel with a deposited carbon layer (Ni@C) were taken into consideration. Storage modulus, loss modulus, and the shift angle between the stress and the strain were characterized by the dynamic mechanical analysis in the oscillatory mode. The intensity of molecular interactions between alginate and the surface of the particles was characterized by the enthalpy of adhesion which was determined from calorimetric measurements using a thermodynamic cycle. Strong interaction at the surface of the particles resulted in the dominance of the “fluidic” rheological properties: the prevalence of the loss modulus over the storage modulus and the high value of the shift angle. Meanwhile, poor interaction of alginate polymer with the surface of the embedded particles favored the “elastic” gel-like properties with the dominance of the storage modulus over the loss modulus and low values of the shift angle.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3