Influence of Thermal and Mechanical Load Cycling on Fracture Resistance of Premolars Filled with Calcium Silicate Sealer

Author:

Smran Ahlam12,Abdullah Mariam1,Ahmad Norasmatul Akma1,AL-Maflehi Nassr3,Samran Abdulaziz24ORCID

Affiliation:

1. Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia

2. Department of Restorative and Prosthetic Dental Sciences, College of Dentistry, Dar Al Uloom University, Riyadh 13314, Saudi Arabia

3. Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh 12372, Saudi Arabia

4. Department of Prosthodontics, College of Dentistry, Ibb University, Ibb 70270, Yemen

Abstract

The aim of this study was to evaluate the aging effect of thermomechanical cyclic load on fracture resistance of lower premolars obturated with AH Plus and BioRoot RCS root canal sealers. Forty-eight single-rooted premolars teeth were instrumented with REVO-S files up to SU/0.06 taper. The teeth were randomly assigned into 2 main groups (n = 24) according to the selected two root canal sealers (AH Plus or BioRoot RCS). All teeth were obturated using matching gutta-percha. Each main group were further divided into 3 subgroups (A, B and C) (n = 8). Group A acted as the negative control group (non-Thermomechanical aging). Whereas Group B and C were subjected first to thermal variations in a thermal cycling machine (7500 and 15,000 thermal cycles), then two different dynamic loading periods namely 3 × 105 and 6 × 105 in a masticatory simulator with a nominal load of 5 kg at 1.2 Hz which simulate approximately 1 ½ and 3 years of clinical function respectively. The roots were decoronated and fracture resistance were measured using a universal testing machine. After thermal-mechanical aging, BioRoot RCS showed significantly higher fracture resistance (p < 0.05) than AH Plus. As the thermal-mechanical cycles increased both AH Plus and BioRoot RCS exhibited a significant decrease in fracture resistance (p < 0.05). It could be concluded that thermomechanical aging had a significant impact on the outcome of the fracture resistance of AH Plus and BioRoot RCS.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3