Three-Dimensional Rendezvous Controls of Multiple Robots with Amplitude-Only Measurements in Cluttered Underwater Environments

Author:

Kim Jonghoek1ORCID

Affiliation:

1. System Engineering Department, Sejong University, Seoul 05006, Republic of Korea

Abstract

This study addresses multi-robot distributed rendezvous controls in cluttered underwater environments with many unknown obstacles. In underwater environments, a Unmanned Underwater Vehicle (UUV) cannot localize itself, since a Global Positioning System (GPS) is not available. Assume that each UUV has multiple signal intensity sensors surrounding it. Multiple intensity sensors on a UUV can only measure the amplitude of signals generated from its neighbor UUVs. We prove that multiple UUVs with bounded speed converge to a designated rendezvous point, while maintaining the connectivity of the communication network. This study further discusses a fault detection method, which detects faulty UUVs based on local sensing measurements. In addition, the proposed rendezvous control is adaptive to communication link failure or invisible UUVs. Note that communication link failure or invisible UUVs can happen due to unknown obstacles in the workspace. As far as we know, our study is novel in developing 3D coordinate-free distributed rendezvous control, considering underwater robots that can only measure the amplitude of signals emitted from neighboring robots. The proposed rendezvous algorithms are provably complete, and the effectiveness of the proposed rendezvous algorithms is demonstrated under MATLAB simulations.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korea government

faculty research fund of Sejong university in 2023

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3