A Self-Supervised Tree-Structured Framework for Fine-Grained Classification

Author:

Cai Qihang1ORCID,Niu Lei1ORCID,Shang Xibin1,Ding Heng1

Affiliation:

1. Central China Normal University Wollongong Joint Institute, Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China

Abstract

In computer vision, fine-grained classification has become an important issue in recognizing objects with slight visual differences. Usually, it is challenging to generate good performance when solving fine-grained classification problems using traditional convolutional neural networks. To improve the accuracy and training time of convolutional neural networks in solving fine-grained classification problems, this paper proposes a tree-structured framework by eliminating the effect of differences between clusters. The contributions of the proposed method include the following three aspects: (1) a self-supervised method that automatically creates a classification tree, eliminating the need for manual labeling; (2) a machine-learning matcher which determines the cluster to which an item belongs, minimizing the impact of inter-cluster variations on classification; and (3) a pruning criterion which filters the tree-structured classifier, retaining only the models with superior classification performance. The experimental evaluation of the proposed tree-structured framework demonstrates its effectiveness in reducing training time and improving the accuracy of fine-grained classification across various datasets in comparison with conventional convolutional neural network models. Specifically, for the CUB 200 2011, FGVC aircraft, and Stanford car datasets, the proposed method achieves a reduction in training time of 32.91%, 35.87%, and 14.48%, and improves the accuracy of fine-grained classification by 1.17%, 2.01%, and 0.59%, respectively.

Funder

ational Natural Science Foundation of China

Central China Normal University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3