Biochemical Characteristics of Laccases and Their Practical Application in the Removal of Xenobiotics from Water

Author:

Gałązka Agnieszka1,Jankiewicz Urszula1ORCID,Szczepkowski Andrzej2ORCID

Affiliation:

1. Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787 Warsaw, Poland

2. Department of Forest Protection, Institute of Forest Sciences, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 159, 02-776 Warszawa, Poland

Abstract

The rapid growth of the human population in recent decades has resulted in the intensive development of various industries, the development of urban agglomerations and increased production of medicines for animals and humans, plant protection products and fertilizers on an unprecedented scale. Intensive agriculture, expanding urban areas and newly established industrial plants release huge amounts of pollutants into the environment, which, in nature, are very slowly degraded or not decomposed, which leads to their accumulation in water and terrestrial ecosystems. Researchers are scouring extremely contaminated environments to identify organisms that have the ability to degrade resistant xenobiotics, such as PAHs, some pharmaceuticals, plasticizers and dyes. These organisms are a potential source of enzymes that could be used in the bioremediation of industrial and municipal wastewater. Great hopes are pinned on oxidoreductases, including laccase, called by some a green biocatalyst because the end product of the oxidation of a wide range of substrates by this enzyme is water and other compounds, most often including dimers, trimers and polymers. Laccase immobilization techniques and their use in systems together with adsorption or separation have found application in the enzymatic bioremediation of wastewater.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3