Material Design in Implantable Biosensors toward Future Personalized Diagnostics and Treatments

Author:

Ghorbanizamani Faezeh1ORCID,Moulahoum Hichem1ORCID,Guler Celik Emine2,Timur Suna13

Affiliation:

1. Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey

2. Bioengineering Department, Faculty of Engineering, Bornova, 35100 Izmir, Turkey

3. Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, 35100 Izmir, Turkey

Abstract

The growing demand for personalized treatments and the constant observation of vital signs for extended periods could positively solve the problematic concerns associated with the necessity for patient control and hospitalization. The impressive development in biosensing devices has led to the creation of man-made implantable devices that are temporarily or permanently introduced into the human body, and thus, diminishing the pain and discomfort of the person. Despite all promising achievements in this field, there are some critical challenges to preserve reliable functionality in the complex environment of the human body over time. Biosensors in the in vivo environment are required to have specific features, including biocompatibility (minimal immune response or biofouling), biodegradability, reliability, high accuracy, and miniaturization (flexible, stretchable, lightweight, and ultra-thin). However, the performance of implantable biosensors is limited by body responses and insufficient power supplies (due to minimized batteries/electronics and data transmission without wires). In addition, the current processes and developments in the implantable biosensors field will open new routes in biomedicine and diagnostic systems that monitor occurrences happening inside the body in a certain period. This topical paper aims to give an overview of the state-of-the-art implantable biosensors and their design methods. It also discusses the latest developments in material science, including nanomaterials, hydrogel, hydrophilic, biomimetic, and other polymeric materials to overcome failures in implantable biosensors’ reliability. Lastly, we discuss the main challenges faced and future research prospects toward the development of dependable implantable biosensors.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3